episcanpy.api.pl.silhouette_tot¶
- episcanpy.api.pl.silhouette_tot(adata_name, cluster_annot, value='X_pca', metric='euclidean', xlabel=None, ylabel=None, title=None, size='large', alternative_plot=False, name_cluster=True, name_cluster_pos='left', palette=None, save=None, key_added=None)¶
Both compute silhouette scores and plot it.
It computes the general silhouette score as well as a silhouette score for every cell according to the cell cluster assigned to it.
- Parameters
- adata_name : AnnData object
- cluster_annot : observational variable corresponding to a cell clustering
- value : measure used to build the silhouette plot (X_pca, X_tsne, X_umap)
- metric : 'euclidean'
- key_added : key to save the computed silhouette scores
- Returns
general silhouette score in ‘uns’ of the AnnData object individual silhouette scores in ‘obs’ of the AnnData object
Silhouette plot
Credit to sklearn script : https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py return score and silhouette plot. Still some work to do to finish the function. size=None but you can put ‘large’ if you want a bigger default figure size