episcanpy.api.pl.correlation_matrix¶
- episcanpy.api.pl.correlation_matrix(adata, groupby, show_correlation_numbers=False, dendrogram=None, figsize=None, show=None, save=None, ax=None, **kwds)¶
Plots the correlation matrix computed as part of sc.tl.dendrogram.
- Parameters
- adata :
AnnDataAnnData - groupby :
strstr Categorical data column used to create the dendrogram
- show_correlation_numbers :
boolbool(default:False) If show_correlation is True, plot the correlation number on top of each cell.
- dendrogram :
bool|str|NoneUnion[bool,str,None] (default:None) If True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added. The dendrogram information is computed using
scanpy.tl.dendrogram(). If tl.dendrogram has not been called previously the function is called with default parameters.- figsize :
Tuple[float,float] |NoneOptional[Tuple[float,float]] (default:None) By default a figure size that aims to produce a squared correlation matrix plot is used. Format is (width, height)
- {show_save_ax}
- **kwds
Only if show_correlation is True: Are passed to
matplotlib.pyplot.pcolormesh()when plotting the correlation heatmap. Useful values to pas are vmax, vmin and cmap.
- adata :
- Return type
- Returns
Examples
>>> import scanpy as sc >>> adata = sc.datasets.pbmc68k_reduced() >>> sc.tl.dendrogram(adata, 'bulk_labels') >>> sc.pl.correlation(adata, 'bulk_labels')