episcanpy.api.pp.pca¶
- episcanpy.api.pp.pca(adata, n_comps=50, zero_center=True, svd_solver='auto', random_state=0, return_info=False, use_highly_variable=False, dtype='float32', copy=False, chunked=False, chunk_size=None)¶
Principal component analysis [Pedregosa11].
Computes PCA coordinates, loadings and variance decomposition. Uses the implementation of scikit-learn [Pedregosa11].
- Parameters
- data
The (annotated) data matrix of shape
n_obs
×n_vars
. Rows correspond to cells and columns to genes.- n_comps
Number of principal components to compute.
- zero_center
If True, compute standard PCA from covariance matrix. If
False
, omit zero-centering variables (usesTruncatedSVD
), which allows to handle sparse input efficiently. PassingNone
decides automatically based on sparseness of the data.- svd_solver
SVD solver to use:
'arpack'
for the ARPACK wrapper in SciPy (
svds()
)'randomized'
for the randomized algorithm due to Halko (2009).
'auto'
(the default)chooses automatically depending on the size of the problem.
- random_state
Change to use different initial states for the optimization.
- return_info
Only relevant when not passing an
AnnData
: see “Returns”.- use_highly_variable
Whether to use highly variable genes only, stored in
.var['highly_variable']
. By default uses them if they have been determined beforehand.- dtype
Numpy data type string to which to convert the result.
- copy
If an
AnnData
is passed, determines whether a copy is returned. Is ignored otherwise.- chunked
If
True
, perform an incremental PCA on segments ofchunk_size
. The incremental PCA automatically zero centers and ignores settings ofrandom_seed
andsvd_solver
. IfFalse
, perform a full PCA.- chunk_size
Number of observations to include in each chunk. Required if
chunked=True
was passed.
- Returns
- X_pca
scipy.sparse.spmatrix
ornumpy.ndarray
If data is array-like and
return_info=False
was passed, this function only returns X_pca…- adata
AnnData
…otherwise if
copy=True
it returns or else adds fields toadata
:.obsm['X_pca']
PCA representation of data.
.varm['PCs']
The principal components containing the loadings.
.uns['pca']['variance_ratio']
)Ratio of explained variance.
.uns['pca']['variance']
Explained variance, equivalent to the eigenvalues of the covariance matrix.
- X_pca